Differenza Tra Regressione E ANOVA

Differenza Tra Regressione E ANOVA
Differenza Tra Regressione E ANOVA

Video: Differenza Tra Regressione E ANOVA

Video: Differenza Tra Regressione E ANOVA
Video: 78. Analisi della varianza 2024, Novembre
Anonim

Regressione vs ANOVA

La regressione e l'ANOVA (Analisi della varianza) sono due metodi nella teoria statistica per analizzare il comportamento di una variabile rispetto a un'altra. Nella regressione, è spesso la variazione della variabile dipendente basata sulla variabile indipendente mentre, in ANOVA, è la variazione degli attributi di due campioni di due popolazioni.

Ulteriori informazioni sulla regressione

La regressione è un metodo statistico utilizzato per tracciare la relazione tra due variabili. Spesso, quando vengono raccolti i dati, potrebbero esserci variabili che dipendono da altri. La relazione esatta tra queste variabili può essere stabilita solo con metodi di regressione. Determinare questa relazione aiuta a comprendere e prevedere il comportamento di una variabile rispetto all'altra.

L'applicazione più comune dell'analisi di regressione è stimare il valore della variabile dipendente per un dato valore o intervallo di valori delle variabili dipendenti. Ad esempio, utilizzando la regressione possiamo stabilire la relazione tra il prezzo delle materie prime e il consumo sulla base dei dati raccolti da un campione casuale. L'analisi di regressione produrrà una funzione di regressione del set di dati, che è un modello matematico che meglio si adatta ai dati disponibili. Questo può essere facilmente rappresentato da un grafico a dispersione. Graficamente la regressione equivale a trovare la curva di adattamento migliore per il set di dati fornito. La funzione della curva è la funzione di regressione. Utilizzando il modello matematico, è possibile prevedere l'utilizzo di una merce per un dato prezzo.

Pertanto, l'analisi di regressione è ampiamente utilizzata nella previsione e nella previsione. Viene anche utilizzato per stabilire relazioni nei dati sperimentali, nei campi della fisica, della chimica e di molte scienze naturali e discipline ingegneristiche. Se la relazione o la funzione di regressione è una funzione lineare, il processo è noto come regressione lineare. Nel grafico a dispersione, può essere rappresentato come una linea retta. Se la funzione non è una combinazione lineare dei parametri, la regressione non è lineare.

Ulteriori informazioni su ANOVA (Analisi della varianza)

ANOVA non implica l'analisi di una relazione tra due o più variabili in modo esplicito. Piuttosto, verifica se due o più campioni di popolazioni diverse hanno la stessa media. Ad esempio, considera i risultati del test di un esame tenuto per un voto nella scuola. Anche se i test sono diversi, le prestazioni possono essere simili da una classe all'altra. Un metodo per verificarlo è confrontare i mezzi di ogni classe. ANOVA o ANalysis Of Variance consente di testare questa ipotesi. In sostanza, ANOVA può essere considerato come un'estensione del t-test, dove vengono confrontate le medie dei due campioni prelevati da due popolazioni.

L'idea fondamentale di ANOVA è considerare la variazione all'interno del campione e la variazione tra i campioni. La variazione all'interno del campione può essere attribuita alla casualità, mentre la variazione tra i campioni può essere attribuita sia alla casualità che ad altri fattori esterni. L'analisi della varianza si basa su tre modelli; modello a effetti fissi, modello a effetti casuali e modello a effetti misti.

Qual è la differenza tra Regression e ANOVA?

• ANOVA è l'analisi della variazione tra due o più campioni mentre la regressione è l'analisi di una relazione tra due o più variabili.

• La teoria ANOVA viene applicata utilizzando tre modelli di base (modello a effetti fissi, modello a effetti casuali e modello a effetti misti) mentre la regressione viene applicata utilizzando due modelli (modello di regressione lineare e modello di regressione multipla).

• ANOVA e Regression sono entrambe due versioni del General Linear Model (GLM). ANOVA si basa su variabili predittive categoriali, mentre la regressione si basa su variabili predittive quantitative.

• La regressione è la tecnica più flessibile e viene utilizzata nella previsione e nella previsione mentre l'ANOVA viene utilizzata per confrontare l'uguaglianza di due o più popolazioni.

Raccomandato: